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Abstract

We propose a systematic method to extract conformal loop models for rational
conformal field theories (CFT). The method is based on defining an ADE model
for boundary primary operators by using the fusion matrices of these operators
as adjacency matrices. These loop models respect the conformal boundary
conditions. We discuss the loop models that can be extracted by this method
for minimal CFTs and then we give dilute O(n) loop models on the square
lattice as examples for these loop models. We also give some proposals for
WZW SU(2) models.

PACS numbers: 05.50.+q, 11.25.Hf, 05.10.Gg

1. Introduction

The study of statistical models related to loop models is interesting both from the physical
and mathematical points of view. Most of the statistical models studied in physics such as
the Ising, the q-state Potts model and also complicated vertex models can be represented in
terms of loops [1]. The loop representation of the spin system is very easy to understand:
loops correspond to domain walls separating regions of different magnetization. The study of
critical loop models can be interesting from many points of view: they are good candidates
for the ground state of topological quantum systems [2]; they are also lattice models for
the Schramm–Loewner evolution (SLE), a method discovered by Schramm [3] to classify
conformally invariant curves connecting two distinct boundary points in a simply connected
domain.

Different applications of conformal loop models stimulate a systematic study of these
models by conformal field theory (CFT). Recently, we proposed in [4] a method to extract
loop models corresponding to a conformal field theory. The method was based on defining an
RSOS model for every primary operator by using the fusion matrix of the primary operator as
an adjacency matrix and then extracting the loop model corresponding to domain walls of the
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RSOS model. The fugacity of a loop is equal to the quantum dimension of the corresponding
operator. This method is in close relation with Pasquier’s classification of ADE lattice models
and their loop representations [5]. In this paper, we want to follow the same method consistent
with the conformal boundary operators. Since SLE is a boundary CFT we think that using the
fusion matrix of boundary operators as an adjacency matrix is more consistent with the nature
of SLE. Recently, a very nice and extensive project was initiated by Jacobsen and Saleur [6]
followed by Dubail et al [7, 8] to classify all the possible conformal boundary loop models.
It is based on classifying the possible boundary loop models compatible with the boundary
conformal field theories. This classification is in close relation with the earlier work by Cardy
on formulating the modular invariant partition function of the O(n) model on the annulus [9].
The results that we get by our method apart from simplicity are all compatible with the results
in [6, 7, 9].

The paper is organized as follows. In the following section, we will introduce the necessary
ingredients to find the boundary operators and also the fusion matrices corresponding to them.
In the third section, we briefly review the method proposed in [4] and we will also generalize
it to the graphs with largest eigenvalue greater than 2. The central claim of this section is as
follows: the loop model extracted with this method is connected with the properties of the
statistical loop model in the same universality class as the corresponding CFT. In the third
section, we follow explicitly some examples, in particular, the Ising model, the tri-critical Ising
model, the three-state Potts model and the tri-critical three-state Potts model. Then we give
the possible loop models, extractable with this method, of minimal CFTs and also the lattice
models corresponding to these loop models. We close this section by giving some proposals
for possible loop models for WZW SU(2) models. The last section contains our conclusions
with a brief description of the work in progress motivated by these results.

2. Boundary conformal field theory

To define the loop model for a generic minimal CFT consistent with the conformal boundary
we need to first summarize the main important facts about boundary CFT. The most important
ingredient to classify the boundary conformal operators is the modular invariant partition
function of the CFT. The classification of modular invariant partition functions of SU(2)

minimal models is well known and can be related to a pair of simply laced Dynkin diagrams
(A,G) [10]. The complete classification based on ADE diagrams is

(A,G) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(Ah−1, Ag−1)

(Ah−1,D(g+2)/2), g even
(Ah−1, E6), g = 12
(Ah−1, E7), g = 18
(Ah−1, E8), g = 30,

(2.1)

where g and h are the Coxeter numbers of A and G with h, g � 2. The above pair of Dynkin
diagrams describes the bulk modular invariant partition function with some primary operators
and with the following central charge:

c = 1 − 6
(h − g)2

hg
. (2.2)

Each of the unitary minimal models M(Ah−1,G) with g − h = ±1 can be realized as the
continuum scaling limit of an integrable two-dimensional lattice model at criticality, with
heights living on the nodes of the graph G. In particular, the critical series with g − h = 1
is associated with the A–D–E lattice models [11]. The tri-critical series with g − h = −1 is
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Table 1. The Coxeter number and the Coxeter exponents of Dynkin diagrams.

Dynkin diagram Coxeter number (h) Coxeter exponent (m)

An n + 1 1, 2, . . . , n

Dn 2(n + 1) 1, 3, . . . , 2n − 1, n − 1
E6 12 1, 4, 5, 7, 8, 11
E7 18 1, 5, 7, 9, 11, 13, 17
E8 30 1, 7, 11, 13, 17, 19, 23, 29

associated with the dilute lattice models [12, 13]. For theories with a diagonal torus partition
function it is known that there is a conformal boundary condition associated with each operator
in the theory [14]. The fusion rules of these boundary operators are just given by the bulk
fusion algebra. It was shown in a series of papers that for SU(2) minimal models one can
propose a complete set of conformal boundary operators i = (r, a) ∈ (A,G), where r and
a are nodes on the Dynkin diagram of A and G, respectively. There is the identification
(r, a) = (h − r, γ (a)), where γ is an automorphism acting on the nodes of the graph G. This
automorphism is identity except for the A,E6 and Dodd which is the Z2 symmetry of the
Dynkin diagram. Symmetries of Dynkin diagrams play an important rule in the forthcoming
discussion. Following [15] we show the corresponding operators by φ̂i and the independent
boundary states by |(r, a)〉 which is called Cardy states. Cardy states can be written in terms
of Ishibashi states, i.e. |j 〉〉, as follows |(r, a)〉 = ∑

j c
j

(r,a)|j 〉〉, where the sum is over all
Ishibashi states. We are interested in the fusion rules of these boundary operators. To give a
formula for the fusion rules of these operators we need to define some quantities. Let � be
the eigenvectors of the adjacency matrix corresponding to the group G. Then the graph fusion
matrices N̂a with a ∈ G can be defined as follows:

(N̂a)b
c =

∑
m∈Exp(G)

�am�bm�∗
cm

�1m
, a, b, c ∈ G, (2.3)

where Exp(G) denotes the set of exponents of G, see table 1. Let us show also the graph
fusion matrix for Ah−1 by Nr then following [15] the fusion rules for boundary operators are

φ̂i1 φ̂i2 =
∑

i3∈(A,G)

(
Ni1

)i3

i2
φ̂i3 , (2.4)

where (Ni1)
i3
i2

has the following relation with the graph fusion matrices of A and G:

(
N(r1,a1)

)(r3,a3)

(r2,a2)
= Nr3

r1r2
N̂a3

a1a2
. (2.5)

For more details about the connection of the boundary operators to bulk counterparts see
[15, 16].

To calculate the fusion matrices of boundary operators we also need to define a conjugation
operator C(a) = a∗. It is the identity except for D4n graphs where the eigenvectors �am are
complex and conjugation corresponds to the Z2 Dynkin diagram automorphism. It then
follows that N̂c

a∗b = N̂b
ca . The operator C(a) acts on the right to raise and lower indices in

the fusion matrices N̂a = N̂aC. It is an important ingredient to get the right fusion matrices
for the boundary operators, in particular for the D4n graphs. We will give some examples in
section 4, in particular, we use the above method to get the fusion matrices of the boundary
operators of the Ising model, the tri-critical Ising model, the three-state Potts model and the
tri-critical three-state Potts model.

3
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b b

C

Figure 1. A triangular plaquette with c �= b and the corresponding curve segment on the dual
honeycomb lattice.

3. Loop models for boundary operators

In this section, we propose a method to extract some possible loop models for CFTs; the
method is the same as the method introduced recently in [4]. In this reference, we showed
that using the fusion matrix as an adjacency matrix it is possible to associate a O(n) loop
model with every primary operator. The method is described briefly as follows: the graph
of a primary operator φ̂i has g vertices, where g is the number of primary operators in the
theory and edges connecting pairs of vertices (j, k) when N k

ij = 1. Following [26] one can
define a height model on the triangular lattice by imposing that the height hj at the site j

can take values 0, 1, . . . , g − 1. Then constraint the heights at neighboring sites according
to the incidence matrix associated with a given primary field φ̂i . Only neighbor heights hj

and hk with (Ni )
k
j = 1 are admissible. For a consistent definition of loop models on a

triangular lattice at least two of the heights at the corners of an elementary triangular plaquette
should be equal. Then the weights for the elementary plaquette are defined as follows: if

the heights of the plaquette are (c, b, b) with c �= b then the weight is x
( Ŝb

l

Ŝc
l

)1/6
, where Ŝ

satisfies
∑

b(Na)
c
b

Ŝb
l

Ŝ0
l

= Ŝa
l

Ŝl
0

Ŝc
l

Ŝ0
l

. It means that the bth element of the eigenvector of Na with

eigenvalue Ŝa
l

Ŝl
0

is given by Ŝb
l

Ŝ0
l

. If the heights are all equal then the weight is 1 except for those

with N b
ab �= 0 that have weights 1 or x depending on the particular model considered1. The

next step is to mark triangles with unequal heights (c, b, b) drawing a curved segment on the
dual honeycomb lattice [26] and linking to the center the midpoints of the two edges with
different heights (b and c) at the extremes (see figure 1). Summing over the admissible values
of heights consistent with a given loop configuration we find

∑
b

(Na)
c
b

Ŝb
l

Ŝc
l

= Ŝa
l

Ŝl
0

, (3.1)

where the sum is just over b. We take most of the times l = 0 to get the largest eigenvalue
of Na to guarantee positive real weights in our height models, however, we will also point to
other cases. The fugacity of loops is given by the largest eigenvalue of the fusion matrix na .
The partition function of the model is as follows:

Z =
∑

xlnN
a , (3.2)

where l is the number of bonds in the loop configuration and N is the number of loops. Using
this method we can correspond to every boundary conformal operator a O(n) loop model.

1 For more details especially about identical neighbor heights see [4].
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Since the O(n) model possesses a dilute critical point for n � 2 with xc = 1√
2+

√
2−n

; see [17],

correspondingly our loop models will have a critical point just for the fields with na less than 2.
The O(n) model has another critical regime, the so-called dense phase, for x = (xc,∞) which
corresponds to a different universality class. Mapping to the O(n) model helps us to find the
connection with SLE: from Coulomb gas arguments we know that, in the dilute regime, the
loop weight has the following relation with the drift in the SLE equation

na = −2 cos

(
4π

κ

)
. (3.3)

For the dense phase the above equation is still true if we work in the region 4 � κ � 8. Using
the above equation we can find the properties of the loop model corresponding to a boundary
conformal operator. The achievement of this method respects the Cardy’s equation [14]: fields
in the same sector have the same loop representation.

Before generalizing the definition to more general graphs we should stress that although
we started with well-defined minimal CFT the loop model that we extracted is not necessarily
minimal. The point is that the extracted loop model respects some aspects of the corresponding
conformal field theory. This is akin to saying that although the domain walls in the Ising model
at the critical point are the same as the critical O(n = 1), the Ising conformal field theory
does not explain all the aspects of the critical curves. From this point the loop model that one
can get by this method from the rational CFT is not perfectly equal to the corresponding CFT.

One can generalize the above idea to the decomposable fusion graphs by the method
that was explained in [18]. Since the fusion graphs of some operators in minimal models
are equivalent to the tensor product of two adjacency diagrams, one can use this method to
extract new loop models that can also have configurations with crossing loop segments. The
general strategy is based on extracting critical loop models with n � 2 for the graphs with
largest eigenvalue greater than 2. Some graphs obey simple decomposition, and can be written
as a tensor product, but others need to be mapped to simple decomposable graphs by going
to the ground-state adjacency graph [18]. Here we just comment on decomposable graphs
N = N1 ⊗N1, where N1 and N2 are simple ADE diagrams. In these cases, we can define the
two-flavor loop model living on the honeycomb lattice independently: one is related to the loop
model of N1 with fugacity n1 and the other comes from the graph N2 with fugacity n2. Fendley
showed [18] that in this case it is also possible to define consistently interacting loop models
on the square lattice with partition function Z = ∑

n
N1
1 n

N2
2 bC , where N1,2 are the numbers

of each kind of loop and C is the number of plaquettes with a resolved potential crossing at
their center. The critical values of b were calculated in [19] but the critical properties of the
loops are still unsolved. This is obviously not the only method to define the loop model for
non-simple graphs; another method is based on the multi-flavor loop model of [13]. In these
models, a curve of flavor i separating two neighboring sites does not necessarily separate two
sites with different heights; for the definition of the RSOS model in this case and its relation
to the loop model see [13].

In the following section, we summarize some simple examples including the most familiar
minimal conformal models such as Ising, tri-critical Ising, three-state Potts model and tri-
critical three-state Potts model. The main point is to take the fusion graphs as adjacency
graphs in the consistent way and to extract some loop models. These loop models are not
equivalent to the corresponding conformal field theory, but still carry some aspects of the
underlying field theory in a consistent way. In particular, the critical properties of these loop
models are in close connection with the corresponding conformal field theory.

In this paper, some distinctions are crucial. We have some minimal conformal field
theories with well-defined fusion matrices and modular invariant partition functions; one

5
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ε1 σ 1 ε σ

εσ1

Figure 2. Graphs of fusion matrices of boundary primary operators in the Ising model, from the
left to the right the fusion graphs of 1, ε and σ . The graph of the operator ε is A2 and the graph of
σ is A3.

example is Ising conformal field theory. There are some statistical models such as spin
models, RSOS models which at the critical point can be described partially by the minimal
CFT, so the Ising CFT is different from the statistical Ising model. We prefer also to distinguish
between for example the dilute ADE models and the dilute O(n) loop model. They can be
mapped to each other and have the same phase transitions but since the fundamental object in
one side is local and in the other one is non-local this distinction is useful. Much work has
been done on connecting these two models, minimal conformal field theories and statistical
models counterparts, using integrability methods. Our argument hardly has something new to
say from this point of view. Finally, we define another statistical model by using the fusion
matrices of primary operators of conformal field theory which most of the time is in the same
universality class as the statistical model counterpart of the corresponding CFT. These height
models also have loop representations. This similarity can be useful to get an idea about the
loop properties of the statistical models with well-known minimal CFTs.

4. Some examples

In this section, we apply the method introduced in section 3 to the minimal conformal field
theories with the well-defined fusion structure and also WZW SUk(2) models. We will also
comment on the consistency of these loop models with the Cardy’s boundary states. This
consistency is a hint to believe that it may be possible to extend the results into the level of
the boundary partition function [9]. For notational convenience in this section of the paper we
will drop the hat of boundary operators.

4.1. Ising model

The simplest example is the Ising model (A2, A3). Since the model has the diagonal modular
invariant partition function the fusion matrices of the boundary operators are the same as the
bulk case. The fusion graphs are as in figure 2 so the boundary states are as follows:

|1〉 = 1√
2
|1〉〉 +

1√
2
|ε〉〉 +

1
4
√

2
|σ 〉〉,

|ε〉 = 1√
2
|1〉〉 +

1√
2
|ε〉〉 − 1

4
√

2
|σ 〉〉,

|σ 〉 = |1〉〉 − |ε〉〉. (4.4)

These equations reflect the Z2 symmetry corresponding to changing the sign of the spin,
this is also evident in the loop representation; nε = n1 = 1. Both operators give κ = 3;
these loops are the domain walls between different spins. It is worth mentioning that this
symmetry comes from the natural Z2 symmetry of the Dynkin diagram. The operator σ with

6
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ε

ε"

ε ε'

1

σ'σ

ε

ε"

ε'

1

σ'

σ

ε

ε"

ε'

1

σ

σ'

εε"

ε'1

σσ'

ε ε"ε'1

σσ'ε

"εε'

1

σ σ'

Figure 3. Graphs of fusion matrices of the boundary primary operators in the tri-critical Ising
model. In the upper row from left to right are the fusion graphs of 1, ε and ε′; in the lower row
from left to right are the fusion graphs of ε′′; σ and σ ′. The fusion graph of ε is A4 plus T2; they
are connected to each other by folding duality. The fusion graph of σ is T2 ⊗ A3.

nσ = √
2 corresponds to the free boundary condition. A loop in the dense phase has κ = 16

3
and describes the domain walls of Fortuin–Kasteleyn (FK) clusters. In the above calculation
we considered only the largest eigenvalue of the fusion graphs; however, it is also possible
to consider other eigenvalues as the fugacity of the loop, and the cost accepts complex local
Boltzmann weights for the corresponding height model. Since loop models are generically
non-local theories, accepting complex Boltzmann weights for the height models (most of the
time) is equal to accepting non-unitary theories. By this introduction one can accept the
possibility of loop models with n = ±√

2, 0 for the loop models corresponding to the A3

diagram of the spin operator.

4.2. Tri-critical Ising model

The next simple example is the tri-critical Ising model, (A3, A4) which has diagonal modular
invariant partition function. The boundary CFT of this model was discussed in [20]. There
are six boundary operators 1, ε, ε′, ε′′, σ and σ ′ with the fusion graphs as in figure 3 and the
following Cardy states

|1〉 = C[|1〉〉 + η|ε〉〉 + η|ε′〉〉 + |ε′′〉〉 + 4
√

2|σ ′〉〉 + 4
√

2|σ 〉〉],
|ε〉 = C[η2|1〉〉 − η−1|ε〉〉 − η−1|ε′〉〉 + η2|ε′′〉〉 − 4

√
2η2|σ ′〉〉 + 4

√
2η−1|σ 〉〉],

|ε′〉 = C[η2|1〉〉 − η−1|ε〉〉 − η−1|ε′〉〉 + η2|ε′′〉〉 + 4
√

2η2|σ ′〉〉 − 4
√

2η−1|σ 〉〉],
|ε′′〉 = C[|1〉〉 + η|ε〉〉 + η|ε′〉〉 + |ε′′〉〉 − 4

√
2|σ ′〉〉 − 4

√
2|σ 〉〉],

|σ ′〉 =
√

2C[|1〉〉 − η|ε〉〉 + η|ε′〉〉 − |ε′′〉〉],
|σ 〉 =

√
2C[η2|1〉〉 + η−1|ε〉〉 − η−1|ε′〉〉 − η2|ε′′〉〉], (4.5)

where C =
√

sin π
5√

5
and η = √

2 cos π
5 . The boundary states corresponding to boundary

operators 1 and ε′′ can be transformed to each other by just changing the sign of spin operators,
i.e. Z2 symmetry. They have also the same loop weight n = 1 that comes from the largest

7
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eigenvalue of the fusion matrix2. The boundary states ε and ε′ are connected also by just
changing the sign of the spin states. The weight of the loops is n = 2 cos( π

5 ) with κ = 5
in the dense phase. This loop model corresponds to the boundary of geometric clusters at
the geometric critical point of the tri-critical Ising model or the Blume–Capel model [22].
The operator σ ′ describes a loop model with n = √

2. The loop model has κ = 16
5 in the

dense phase which is related to the boundary of spin clusters and also vacancy clusters in the
Blume–Capel model [22, 23]. The interesting point for tri-critical models is the equality of
critical exponents for spin clusters and FK clusters [22, 23]. The operator σ is related to the
degenerate boundary condition and the corresponding loop model with n = 2

√
2 cos( π

5 ) is
non-critical. However, it is easy to see that the fusion matrix of this operator is decomposable
to simple matrices Nσ = NT2 ⊗ NA3 . Then for this graph we have two-flavor loop model with
fugacities n1 = √

2 and n2 = 2 cos
(

π
5

)
. One can conclude from the above discussion that

those operators with the same loop representations are connected to each other by folding and
orbifold duality and it is also possible to see these symmetries in the level of boundary states.

Similar to the previous subsection one can also consider that other possible loop weights
come from the other eigenvalues of the fusion matrix. The eigenvalues of the fusion matrix
of the operator ε are n = ±2 cos

(
π
5

)
,± 1

2 cos( π
5 )

and the eigenvalues of the fusion matrix of

the operator σ ′ are ±√
2, 0. The eigenvalues of the other operators are a subset of the above

eigenvalues. Interestingly, apart from the negative eigenvalues, the above numbers can be
fitted with the boundary loop weights in both dense [6–8] and dilute [8] regimes3. However,
the height models in these cases have negative Boltzmann weights and so are obviously non-
unitary but in the level of loop model one can think about the unitary loop model. In other
words, two different Boltzmann weights, one real and the other complex, can give similar loop
models. However, in our calculation the criterion for the existence of real Boltzmann weights
is not obvious and needs more investigation.

4.3. Three-state Potts model

The next example is the first non-diagonal case, the three-state Potts model (A4,D4) with
eight boundary operators 1, ψ,ψ †, ε, σ, σ †, φ1,2 and φ̂2,2, see [14, 15, 24]. The fusion
graphs are given in figure 4. Following Cardy’s argument one can show that the operators
1, ψ,ψ † correspond to fix boundary conditions and the corresponding boundary states can be
transformed to each other by the Z3 symmetry, i.e. the symmetry of the Dynkin diagram D4.
They also have the same quantum dimensions n1 = nψ = nψ† = 1. The operators ε, σ, σ †

describe the fluctuating boundary conditions [25] and all have the same kinds of fusion graphs
with nε = nσ = nσ † = 2 cos( π

5 ). In the dilute phase one can consider κ = 10
3 as a SLE drift.

In the lattice three-state Potts model, these loops are the same as the domain walls between one
definite spin cluster with the other two spins [25]. The fusion graph of the operator φ1,2 is two
D4 graphs. This operator describes the fix boundary condition and has the loop model with
n = √

3 which is equal to the fugacity of domain walls in FK clusters of the three-state Potts
model. The operator φ2,2 describes the degenerate boundary condition and the corresponding

loop model with nφ2,2 =
√

9+3
√

5
2 is non-critical; however, decomposition is possible. In this

case, one can write Nφ2,2 = NT2 ⊗ ND4 and so the corresponding two-flavor loop model has
fugacities n1 = √

3 and n2 = 2 cos
(

π
5

)
.

2 To get the loop weights we consider one simply connected part of the fusion graph as an adjacency graph; the other
parts of the graph have always equal largest eigenvalues. One can see that these different parts are folding or orbifold
dual of each other, see [21].
3 The consistency is just at the level of integer r mentioned in [7, 8].

8
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Figure 4. Graphs of fusion matrices of primary operators in the three-state Potts model. In the
upper row from left to right are the fusion graphs of 1 and ε; in the middle row from left to right
are the fusion graphs of φ1,2 and φ2,2 and in the lowest row are the fusion graphs of ψ and σ . The
fusion graphs of ψ† and σ † can be derived from the fusion graphs of ψ and σ by the following
exchanges: ψ ↔ ψ† and σ ↔ σ †. The fusion graph of ε is A4 plus two T2 graphs, they are
connected to each other by folding duality. The fusion graph of φ1,2 is two D4 and the fusion
graph of φ2,2 is T2 ⊗ D4.

The fusion matrix of ε as was discussed in the case of the tri-critical Ising model has
eigenvalues n = ±2 cos

(
π
5

)
,± 1

2 cos( π
5 )

. The eigenvalues of ND4 are ±√
3, 0. These loop

weights can be fitted with the boundary loop fugacities in [6–8].

4.4. Tri-critical three-state Potts model

The next interesting example is the tri-critical three-state Potts model (D4, A6). It has the
non-diagonal modular invariant partition function and also it is not part of Pasquirer’s A–D–E
models. The boundary states of this model have not been investigated systematically so far.
The boundary operators of this model are φi with i = (r, a), r = 1, 2, 3 and a = 1, . . . , 4. The
fusion graphs for the boundary operators in this case are given in the appendix. The boundary
states corresponding to boundary operators φ1,1, φ1,3, φ1,4 can be transformed to each other
by the Z3 symmetry of spin operators and should correspond to fix boundary conditions with
n = 1. The operators φ2,1, φ2,3, φ2,4 have also the same property with the same fusion graphs
with n = 2 cos( π

7 ). In the lattice tri-critical three-state Potts model, they are domain walls of
geometric clusters of geometric critical point [22] with κ = 4 7

6 . The operators φ3,1, φ3,3, φ3,4

can be transformed to each other by the Z3 symmetry; however, they have loop fugacities
greater than 2; n = 2.246. The operators φ2,2 and φ3,2 have also loop weights more than 2
and are related to degenerate boundary conditions. Finally, the graph of φ1,2 is equal to three
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D4 graphs with n = √
3. In the dilute phase, this weight describes the domain walls of spin

clusters in the lattice tri-critical three-state Potts model with κ = 4 6
7 .

The fusion graph of φ2,1 is the sum of two graphs A6 and T3. The fusion matrix has
the eigenvalues n = 2 cos

(
πj

7

)
with j = 2, 3, 4, 5, 6. The eigenvalues of the fusion matrix

of φ1,2 are n = ±√
3, 0. Interestingly, again apart from the negative eigenvalues, the above

numbers can be fitted with the boundary loop weights in [6, 7]. The fusion graph of φ2,2 is
decomposable as T3 ⊗ D4 and so it is possible to define two crossing loop models in this case.
The fusion graphs of φ3,1 are not decomposable to simple graphs so it is not possible to extract
critical loops also for φ3,3 and φ3,4 which are in the same sector. Although the loops, extracted
by our method, corresponding to the above operators are not critical, by considering the fusion
graph of the ground state of the above adjacency graph it is possible to extract critical loops.
We will not discuss this method here, for more details one can see [18]. The fusion graph of
φ3,2 is decomposable but not to the simple graphs, i.e. Nφ3,2 = NT 2

3
⊗ND4 . Another possibility

to extract critical loops for φ3,1 is by considering other eigenvalues of the fusion matrix of this

operator. The eigenvalues of Nφ3,1 are ± sin( 3π
7 )

sin( π
7 )

,± sin( 2π
7 )

sin( π
7 )

and ± sin( π
7 )

sin( 2π
7 )

; the last two cases have

critical loops.

4.5. Minimal models

Finding loop models by the method explained in section 3 is general and applicable for more
generic cases. Take a pair (A,G) from equation (2.1); then it is possible to correspond at least
two different kinds of loop models for these minimal models with the following weights:

n = 2 cos

(
π

g

)
, n = 2 cos

(
π

h

)
. (4.6)

They are the largest eigenvalues of the fusion matrices of φ1,2 and φ2,1. One can also consider
the following SLE drifts for these loop models:

κ = 4
g

g + 1
, κ = 4

h

h − 1
, g − h = 1,

κ = 4
g

g − 1
, κ = 4

h

h + 1
, g − h = −1. (4.7)

The other eigenvalues of G can be written as

n = 2 cos

(
πm

g

)
, (4.8)

where m is one of the Coexter exponents of the graph G. They are listed in table 1.
It is possible to consider loop models for the above eigenvalues as before; however, they

are not still all the possible loop models. We already showed in some cases that one can
define two flavor loop models for decomposable fusion graphs. It is also possible, as in the
case of the fusion graph of φ3,1 in the tri-critical three-state Potts model, to have matrices
with relevant non-largest eigenvalues. We believe that they are relevant because the same loop
weights appear in the classification of Jacobsen and Saleur [6].

Although so far we have given more familiar examples as the possible candidates for our
loop models, it is also possible to extract systematic examples for the above proposals by using
Pasquier’s ADE models and dilute ADE models [12, 13]. Pasquier’s ADE models give a lattice
realization for the (A,G) series with g−h = 1 and the description briefly is as follows: define
an RSOS model by using the graph G. This height model at the critical point can be described
by a minimal CFT. Then map this height model to the loop model [26] at the critical point

10
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Figure 5. The Boltzmann weights of the different vertices in the O(n) model on the square lattice.

with n = 2 cos( π
g
) which is the same as the loop model that we proposed in (4.6). Of course

the method proposed in this paper and [4] is highly influenced by Pasquier’s ADE models
but it has something more to say by connecting the loop properties to the fusion properties of
the primary operators. To get the dilute loop models and the loop models corresponding to
tri-critical models we need to use dilute ADE models. These models have rich phase diagrams
with four branches: branches 1 and 2 have central charges c = 1 − 6

g(g±1)
and branches 3 and

4 have c = 3
2 − 6

g(g±1)
. One can also map these height models to O(n) loop models with the

non-intersecting bonds on the square lattice with the partition function

Z =
∑

uNuvNvwNwnN, (4.9)

where the weights for different plaquettes are given in figure 5 and Nu,Nv and Nw are the
numbers of different plaquettes [27]. This generalized O(n) loop model apart from the critical
properties at u = w = 1

2 and v = 0 has four other branches which coincide with the four
branches of dilute ADE models [29]. The weights are given by

n = −2 cos(2θ),

w = 1

2 − [1 − 2 sin(θ/2)][1 + 2 sin(θ/2)]2
,

u = ± 4w sin(θ/2) cos(π/4 − θ/4), (4.10)

v = ±w[1 + 2 sin(θ/2)],

where π
2 � θ � π, 0 � θ � π

2 ,−π
2 � θ � 0 and −π � θ � −π

2 are the intervals
corresponding to branches 1, 2, 3 and 4, respectively. They coincide with the different
branches in the dilute ADE models.

It is interesting to investigate the connection of the above loop model to the SLE. There
are different methods for doing this; here we use the magnetic operator to find the SLE drift.

11
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It was shown in [27] by numerical calculation that the magnetic exponent of the branches 1
and 2 is identified with 2hm+1

2 , m+1
2

where

hr,s = ((m + 1)r − ms)2 − 1

4m(m + 1)
, (4.11)

and m is related to the central charge of the theory by c = 1 − 1
m(m+1)

. Its connection to the

loop variables comes from the relation 2θ
π

+ π
2θ

− 2 = 1
m(m+1)

derived from the coulomb gas
method [27]. The connection of the magnetic exponent to the SLE drift is as follows [28]:

2hm+1
2 , m+1

2
= (8 − κ)(3κ − 8)

32κ
. (4.12)

Using the above equation the SLE drift at branches 1 and 2 of the loop model (4.9) can be
derived as follows:

κ = 8θ

π
. (4.13)

This result is also consistent with our expectation from the second level null vector of minimal
models [30], it is also consistent with the recent direct investigation by using holomorphic
variables [31] .

Back to the height model representation one can summarize following results: branch 2
of the ADE models corresponds to the dilute loops with n = 2 cos

(
π
h

)
and branch 1 is the

dense phase of tri-critical models with n = 2 cos
(

π
h

)
. The results for some of the simple cases

are as follows:

branch 2: A2 = critical percolation, c = 0 n = 1,

branch 1: A2 = critical Ising c = 1/2 n = 1,

branch 2: A3 = critical Ising c = 1/2 n =
√

2,

branch 1: A3 = tri-critical Ising c = 7/10 n =
√

2,

branch 2: A4 = tri-critical Ising c = 7/10 n = 2 cos

(
π

5

)
,

branch 2: D4 = critical three-state Potts c = 4/5 n =
√

3,

branch 1: D4 = tri-critical three-state Potts c = 6/7 n =
√

3.

Using the above method it is easy to find the lattice realization for most of the proposed
loop models, and the results are interestingly consistent. Following the same method it is
possible to extract the loop models corresponding to minimal CFTs. However, the loop model
for the non-diagonal cases with g − h = −1 is not extractable with this method because we
are not able to find the dense phase of loop models for these cases. It seems that the dense
lattice height model has not been proposed for this case.

One can summarize the important observations in the case of minimal models as follows:
consider the operators φ1,2 and φ2,1 both the bulk and boundary cases. The highest eigenvalue
of the fusion matrices of these operators in the bulk and on the boundary are the same and
can define a loop model with fugacity n. One should note that in the corresponding loop
model putting the operators φ1,2 and φ2,1 on the boundary just means that there is one critical
curve emerging from the boundary similar as SLE with the fractal properties similar to the
corresponding loop model in the bulk. The bulk operators φ1,2 and φ2,1 do not have obvious
meaning with respect to the loop model but still they can give right answer for the fractal
properties of the loop model. For example, the bulk φ1,2 after approaching the boundary is
similar to φ1,3. This operator φ1,3 gives the fractal dimension Db of the contact set of a loop
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with boundary Db = 2 − 2h1,3. This is obvious also from the context of boundary operators,
just we need to look at φ1,2(x1) and φ1,2(x2) in the limit of small x2 − x1. Then by fusion we
have the operator φ1,3 on the boundary4. To find the fractal dimension of the loops in the bulk
one needs to consider φ1,0 or φ0,1 then the fractal dimension is D = 2 − 2h0,1(h1,0). These
operators are not in the Kac table and so one should look at them from the more general point
of views such as the Coulomb gas methods.

To conclude this subsection, we proposed some loop representations for the minimal
CFTs by using fusion of boundary operators. Then since ADE models give a lattice statistical
model representation for minimal CFTs we used these models to extract physical loop models
corresponding to ADE models. The fractal properties of these lattice loop models are the same
as the loop models that we proposed by using the fusion of primary operators.

4.6. SUk(2) models

It is possible to follow the same calculation for every unitary minimal model. For example, for
WZW SUk(2) models the classification of modular invariant partition functions is based on
A–D–E–T graphs with g = k + 2. The same method as the minimal models is applicable here
and one can find boundary operators φ̂j with 1 � j � k + 1. The loop models have weights

dj = sin(
πj

g
)

sin( π
g
)
. Only j = 1

2 has critical loop representation with the following loop weight:

n = 2 cos

(
π

k + 2

)
, (4.14)

with κ = 4 k+2
k+3 and κ = 4 k+2

k+1 for the dilute and dense phases, respectively. The other loop
models are not critical except for k = 4 with n = 2. The fusion graphs of the operators with
j �= 1

2 are not decomposable to the simple graphs, however, the non-largest eigenvalues can
be still relevant. For example, take k = 5 with j = 3/2, the fusion graph is similar to the
one part of the φ31’s fusion graph of the tri-critical three-state Potts model, the right one in

figure A1. The eigenvalues are ± sin( 3π
7 )

sin( π
7 )

,± sin( 2π
7 )

sin( π
7 )

and ± sin( π
7 )

sin( 2π
7 )

, the last two cases have critical

loop representations. The similarities between fusion graphs of SUk(2) models with minimal
models are not just an accident, they are based on the coset construction of the minimal models.

5. Discussion

We proposed a method to classify some possible loop models consistent with the conformal
boundary conditions for generic rational CFT: take the simply laced classification of the
corresponding minimal CFT then find the boundary operators and also the fusion matrices.
Make the O(n) loop model of the primary operator by the method that we discussed in section 3
and [4]. We think that there should be some connections between these loop models and the
SLE interpretation of CFT investigated in [30] which is based on the connection of SLE with
the null vectors in the CFT. This connection is not complete even for minimal CFTs because
we do not know how to explain the boundary operators with the same loop model but with the
different null vectors. For example, in the three-state Potts model ε, σ and σ † are in the same
sector from the boundary CFT point of view but just ε and σ have the required second level
null vectors. However, from the null vector point of view this correspondence is not clear
but it is possible to show that in the partition function level this similarity is more known.

4 One should note that one can also give different fugacities for those loops that touch the boundary in the appropriate
way and still preserve the conformal symmetry[7]. In our argument, we considered the O(n) models that the fugacity
is similar for the loops in the bulk and those that touch the boundary.
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Figure A1. The fusion graphs of the tri-critical three-state Potts model.

Another way to look at the results of this paper is by conjecturing the largest eigenvalue of
the fusion graph as the possible loop weight for the loop model in the universality class of the
corresponding CFT without defining any height model on the fusion graph.

One possible generalization of the above construction is by considering graphs with largest
eigenvalue greater than 2 as an adjacency graph of fused RSOS models and then extracting the
loop model by the method investigated in [18]. The other interesting direction is to investigate
the modular invariant partition functions of loop models and their possible connections to the
classified modular invariant partition functions of minimal models; this is based on the direct
investigation of the connection of our method to the classification of [6, 7].
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Appendix

In this appendix, we list the fusion graphs of the boundary operators in the tri-critical
three-state Potts model. The fusion graphs are given in figure A1. The fusion graph
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Figure A1. (Continued.)

of φ1,4 can be derived from the fusion graph of the operator φ1,3 by the following
transformations:

φ1,3 ↔ φ1,4, φ2,3 ↔ φ2,4, φ3,4 ↔ φ3,3. (A.1)

The fusion graph of φ2,3 can be derived from the fusion graph of the operator φ2,1 by the
following transformations:

φ1,3 ↔ φ1,1, φ2,3 ↔ φ2,1, φ3,3 ↔ φ3,1. (A.2)

Finally, the fusion graph of φ2,4 can be derived from the fusion graph of the operator φ2,1 by
the following transformations:

φ1,4 ↔ φ1,1, φ2,4 ↔ φ2,1, φ3,4 ↔ φ3,1. (A.3)

To get the fusion graphs of φ3,3 and φ3,4 from the fusion graph of φ3,1 one just needs to use
transformations (A.2) and (A.3), respectively.

We shall call the part of the fusion graph of φ3,1 with two neighbor blobs T 2
3 , the lower

index is the number of nodes and the upper index is the number of blobs attached to the
neighboring nodes of the graphs starting from one of the extremes. These kinds of fusion
graphs appear also in the fusion graph of φj=1 of SU2(k) models.
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